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Abstract

Automated, as well as accurate classifica-

tion with breast cancer histological images,

was crucial for medical applications because

of detecting malignant tumors via histo-

pathological images. In this work create a

Fourier ptychographic (FP) and deep learn-

ing using breast cancer histopathological

image classification. Here the FP method

used in the process begins with such a ran-

dom guess that builds a high-resolution

complex hologram, subsequently uses itera-

tive retrieval using FP constraints to stitch

around each other low-resolution multi-

view means of production owned from

either the hologram's high-resolution holo-

gram's elemental images captured via integral imaging. Next, the feature extrac-

tion process includes entropy, geometrical features, and textural features. The

entropy-based normalization is used to optimize the features. Finally, it attains

the classification process of the proposed ENDNN classifies the breast cancer

images into normal or abnormal. The experimental outcomes demonstrate that

our presented technique overtakes the traditional techniques.
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1 | INTRODUCTION

Breast cancer is the most common cancer among women
and is also linked to a high rate of morbidity and mortal-
ity in women [1]. The assessment of histological images
underneath the microscope has been one of the main pil-
lars in clinical applications. Histopathological slides may
now be scanned and stored as digital pictures thanks to

the invention of imaging sensors [2]. Because the size of
digital images grows considerably with magnification,
developing approaches for image processing as well as
analysis, would be excellent if classification could be uti-
lized in breast cancer computer-aided diagnostics (CAD).
Scale-invariant feature transform, histogram of oriented
gradient, and gray-level co-occurrence matrix are exam-
ples of hand-crafted features, and grain approaches
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presented With breast cancer histopathology image anal-
ysis tasks of detection and classification [3, 4]. Other
Support vector machines, for example, are well-known
classifiers that have also been mentioned. Because of
their remarkable outcomes in Deep learning methods
like CNNs have lately attracted a lot of attention for a
variety of histopathological image processing applications
for breast cancer research. [5].

Recent developments and advancements in image
processing have paved the way for the creation of
computer-assisted diagnostic (CAD) systems that use his-
topathological pictures to detect and diagnose breast can-
cer more quickly and accurately [6]. Histopathology
images vary greatly when compared to radiology images
(x-ray, ultrasound, computed tomography, positron emis-
sion tomography, and magnetic resonance image) and
cytopathology images. The CAD system evaluates the sam-
ple tissue's histopathological images and determines the
histopathological patterns that distinguish between carci-
nogenic versus noncancerous conditions, as well as malig-
nancy pictures [7]. The intrinsic complexity of histological
images, like cell overlapping, minor variations between
images, and uneven color allocation, makes them difficult
to interpret among the fundamental issues with breast
cancer histopathology image categorization [8, 9].

One of the most extensively utilized procedures is the
biopsy method for detecting women with breast cancer,
tissue is collected, analyzed, and examined under a micro-
scope by a pathologist for abnormalities [10]. This method
is difficult, error-prone, and time-consuming yielding vary-
ing findings determining the amount of expertise of the
pathologist's competence. Not only can an automated and
efficient method will not only aid in the diagnosis of breast
cancer but also help to reduce human effort [11]. Cancer
is a major public health issue that affects people all over
the world. Breast cancer is the second leading cause of
mortality among women's cancer kinds after lung cancer.
Furthermore, as compared to other cancers, breast cancer
has an extremely high death rate [12]. Despite fast
improvements in medicine, histological image analysis is
still the most often utilized approach for diagnosing breast
cancer [13]. The classification job is the most essential of
all the responsibilities for histopathology image analysis
[14, 15], which is the automated and accurate categoriza-
tion of high-resolution histopathological images.

Clinical histopathological imaging practice is now pri-
marily reliant on pathologists' qualitative analysis by
hand [16]. This technique of analysis has at least three
flaws. Major, pathologists are in limited supply across the
world, particularly in developing countries besides slight
organizations. The shortage of resources and unequal dis-
tribution of those resources is a significant issue that
must be addressed. Second, whether the histological

diagnosis is valid or erroneous is determined by signifi-
cant professional skill and long-term clinical knowledge
of the pathologist [17, 18]. A spate of diagnosis blunders
has occurred from pathologist subjectivity. Next, patholo-
gists are prone to tiredness and inattention due to the
intricacy of histological pictures. To address these issues, it
is critical to create automated and accurate histopathologi-
cal image analysis tools, particularly classification
approaches [19]. The usual method for histopathological
object recognition splits a big image split smaller patches,
utilizes a CNN to categorize every reinforcement, and
afterward aggregates the classification performance of
these patches, such as by majority vote, to provide classifi-
cation accuracy [20]. Contribution to the paper and its
structure:

1. In the following steps, we provide a novel categorization
framework in our paper: Using the Fourier ptycho-
graphic (FP) technique to calculate high-resolution
computer-generated integral holograms.

2. The second feature extraction process includes
entropy, geometrical features, and textural features.

3. Finally, it attains the classification process of the pro-
posed entropy-based normalization deep neural net-
work (ENDNN) classifier that classifies the breast
cancer images into normal or abnormal.

4. Each stage of a methodical approach working process
was explained in depth in the subsequent sections.

The other sections of the paper are divided as follows:
Section 2 explains its suggested methodology based on rele-
vant research, and Section 3 discusses the proposed FP and
deep learning using breast cancer histopathological image
classification approach. In Section 4, the experimental results
are analyzed, and in Section 5, the conclusion is offered.

2 | LITERATURE SURVEY

Edson D. Carvalho et al. [21] propose a technique for
developing agile processes to promote sustainable develop-
ment phylogenetic diversity indexes and histological breast
images were divided into four groups: invasive carcinoma,
in situ carcinoma, normal tissue, and benign lesion. In
addition, bandwidth imagery retrieval was employed to
verify the recognition accuracy and provide a rating for
unlabelled image sets in this study. The results were quite
consistent, and they were beneficial in the development of
a CADx platform for aid experts in large health centers.

Ala'a El-Nabawy et al. [22] a feature fusion approach
has been developed for extracting the finest features from
various datasets. The METABRIC datasets, which also
include clinical data, gene expression, CNA as well as
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CNV data, and histopathology images, are used in the
proposed method. Several machine learning classifiers
were used to create and test different data profiles. The
purpose of this study is to show that combining features
from different METABRIC datasets enhances breast can-
cer subtype classification accuracy. Furthermore, histo-
pathological images show encouraging findings for Pam50
subtypes, and when applied to a larger population, it is
predicted to increase the accuracy of IntClust subtyping.

Yun Jiang et al. [10] construct a CNN with such a con-
volutional layer, a small SE-ResNet component, as well as
a fully connected layer using a convolutional layer, a tiny
SE-ResNet module, and a completely connected layer. In
addition, a smaller SE-ResNet module is developed, that
progresses the coupling of the outstanding component
with both the squeeze-and-excitation chunk besides
obtaining equal performance through small datasets. A
new learning rate scheduler has also been included, allow-
ing for outstanding performance without the need to fine-
tune the learning rate. This approach was used to divide
histological images of breast cancer into benign, malig-
nant, and eight subcategories automatically.

Yun Jiang et al. [23] for grouping two CNN-based
approaches are suggested for analyzing Histopathology
photos of breast cancer stained with H&E. Histopathology
image dataset for breast cancer, the first method's CNN dem-
onstrates that the HEBCNet obtains better classification
accuracy. The transfer learning hybrid model structure is
used in the second technique. The complexity and limitations
of manual feature extraction are avoided, and classification
accuracy is enhanced, by employing separate pre-training
models to extract features and training two classifiers.

An Pan et al. [24] using Euler's formula, establish a
relationship between FPM with patterned irradiance
microscopy are two different types of microscopy.
The research concludes with a discussion of the difficult
challenges and potential applications. FPM may be used
as a framework for dealing with phase loss and system limi-
tations in imaging systems. Speckle imaging, incoherent
imaging for retina imaging, and large-field-of-view fluores-
cence imaging can all benefit from this information.

Yi Xiao et al. [25] demonstrate a laser-illumination
Fourier ptychographic microscopy (FPM) technique
based on a digital micro-mirror device (DMD) for high-
speed and high-resolution label-free imaging applica-
tions. We may extract phase and intensity images of
materials, such as stained and unstained cancer tissue
slices and cells, using this approach. A 532 nm laser pro-
vides system illumination, and two DMDs are used to
achieve active illumination angle scanning and dynamic
filtering. This device has achieved real-time imaging at
42 frames per second with a resolution of about 1 m.
The comparison analysis of existing papers and their
advantages and disadvantages is given in Table 1.

3 | PROPOSED METHODOLOGY

This paperwork is to develop holography using FPM and
breast cancer classification using ENDNN. The FP tech-
nique uses high-resolution computer-generated integral
holograms that were originally used. The approach starts to
create a high-resolution complicated hologram with a ran-
dom guess, then uses iterative retrieval with FP constraints

TABLE 1 Comparison analysis of existing papers and their advantages and disadvantages.

Author Year Technique Advantages Disadvantages

Edson et al. [21] 2020 Textural features and
CBIR

Best efficiency Improve robustness and
making the method more
generic are needed

Ala'a El-Nabawy et al. [22] 2020 METABRIC breast cancer
subtype classification

Highest accuracy achieved A small number of samples

Yun jiang et al. [10] 2019 Convolutional neural
networks with a small
SE-ResNet module

Achieves accuracy Improve reliability is needed

Yun Jiang et al. [23] 2019 Convolutional neural
network

Help reduce costs and increase
the efficiency of the process

Better accuracy is needed

An Pan et al. [24] 2020 Computational imaging High-throughput imaging The optimization problem in
nature

Dr. Yi Xiao et al. [25] 2021 Digital micro-mirror
device-based laser-
illumination Fourier
ptychographic
microscopy

High-speed and high-resolution Achieving active illumination
angle is needed improvement
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to stitch to restore the elevated hologram by combining lim-
ited multi-view images obtained from either the elemental
images acquired by integral imaging. Then the second step
the feature extraction process includes entropy, geometrical
features, and textural features. Then entropy-based normali-
zation is used to optimize the features. Finally, it attains the
classification process of the proposed ENDNN classifier that
classifies the breast cancer images into normal or abnormal.
A block diagram of the system is shown in Figure 1 suggest-
ing the categorization technique.

As indicated in Figure 1 above; using FPM and breast
cancer classification using ENDNN. Based on this, clas-
sifies the breast cancer images into normal or abnormal
which is explained detailedly in the following sections;

3.1 | Holography process

Holography is the technique of creating a hologram.
Light from a laser records an image of the desired item
on film or a photographic plate when a hologram is cre-
ated. An embossed hologram is created by using a
mirror-like material to back a transmission hologram,
allowing it to be seen when illuminated from the front.
Holography is important to modern technology because
it allows us to regulate the flow and direction of light.
To generate 3D expansion, we employ holographic
methods. We make use of a tiny projector with a small
pupil. The following is a diagrammatic representation of
the holography process;

Holography process

Fourier ptychographic 

microscopy

Initialization

Iterative recovering process

Recovered image

Feature extraction

entropy

Geometrical 

features

Texual 

features

LESION NORMAL

Classification using ENDNN Entropy based normalization

 
FIGURE 1 Proposed classification

technique.
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Holography is indeed a technique for capturing as
well as reconstructing a light field whenever the original
light field is not any longer visible due to the removal of
the original items, as seen in the bow Figures 2 and 3.
The light waves of the two laser beams collide and inter-
fere as they reach the recording medium. The recording

medium bears the impression of this interference pattern.
The pattern seems random because it depicts how light
inside the scene is associated with both the original light
source, but not by the light source itself. It is possible to
think about the interference pattern dynamically
encoded representation of the environment that requires
a certain key for accessing their elements (the actual light
source) [27]. A laser, comparable to recording the holo-
gram, is then flashed across the produced film to provide
the missing key. The holograms diffract this beam surface
pattern when it lights it. This scatters a light field onto
the hologram that is identical to the one created by the
scene (Figure 4) [28].

A photograph of a small section of an unbleached
transmission hologram examined under a microscope is
shown here. After completing the holography process,
features are extracted. The feature extraction process
includes entropy, geometrical features, and textural fea-
tures, it will be explained in full as follows:

3.2 | Fourier ptychographic microscopy

FP is a computational imaging approach based on optical
microscopy that involves generating a larger numerical

FIGURE 2 Recording holography.

FIGURE 3 Reconstructing holography.
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aperture (NA) from a sequence of full-field images recorded
at different coherent illumination angles and velocities,
resulting in higher resolution than a standard microscope.
The suggested high-resolution FPM system is roughly
depicted in Figure 3. An illuminating system and an imag-
ing system make up the system. The following are thorough
explanations of the working processes.

3.2.1 | Fourier ptychographic setup details

The illumination is provided by a coherent light source, a
He–Ne laser of 5 mW, and a wavelength of 632.8 nm.
The dual-axis galvanometer provides the sample with
illuminations at different incidence angles and is focused
on the sample by condenser lenses. FP is a technique for
stitching together a succession of lighted, low-resolution
intensity photographs in Fourier space to create a high-
resolution complex sample image. This technique recon-
structs the complex image of the object with quantitative
phase information using retrieval of phases that are itera-
tive algorithms. Finally from the reconstructed phase, the

refractive index of the specimen is determined. After this,
holography starts its process which is explained
detailedly as follows.

The PSI-FPM system's configuration is shown sche-
matically in Figure 5. An image patch illumination sys-
tem and a detecting system make up the system. A laser
beam with a wavelength of λ = 632.8 nm, a beam
expanded and collimated instrument, phase-only liquid
crystal on silicon (LCoS) with a polarization beam splitter
(PBS), a 4-f system, a conder lens, and a sample make up
the illumination system. A 4�/0.13 objective, a 0.75�
tube lens, and a monochrome CCD camera are included
in the detention system, which is standard biological
microscopy equipment (MI52 Mshot).

The phase-only spatial light modulator employed in
the picture patch lighting system is Holoeye LETO LCoS,
which has a resolution of 1920 � 1080 pixels and a pixel
pitch of 6.4 μm. After a PBS, which ensures the polariza-
tion state of the beam is aligned with that of the LCoS,
the collimated and enlarged laser beam illuminates the
image patch loaded on the LCoS. The patch picture pat-
terns are chosen to be 512 � 512 pixels in size for each
illumination. The projected beam from LCoS is transmit-
ted through a 4-f system consisting of identical-
focal-length lenses 1 and 2. Because the condenser's back
focal length is short, a 4-f method is used to communicate
the loaded image patch patterns to the condenser's rear
focal plane. Furthermore, the 4-f system makes it simple
to insert a spatial filter between lenses 1 and 2 to suppress
diverse noises, which improves experimental operability.
To project the dense image patch pattern onto the sample,
an inverted 4�/0.13 objective with infinity-corrected is
chosen as the condenser.

Finally, the detection mechanism captures the beam
with the sample information. To make the sample infor-
mation image on CCD, the detecting system's objective is
infinity-corrected and should be utilized with an
f = 180 mm tube lens. With the 4�/0.1 objective and
0.75� tube lens, the CCD pixel size is 2.4 μm, which
equals 0.8 μm in the sample plane. For two objectives,
the sample is put at a working distance; no defocus is
required because the image patch pattern employed in
our method is known. The image patch pattern is loaded
with one-pixel scanning in the x-direction and three-pixel
scanning in the y-direction sequentially, allowing the
monochromatic CCD camera to capture a series of
images with different speckle illumination, which can
then be used to reconstruct a high-resolution complex
image. The following is a diagrammatic representation of
the laser-overall FPM's flow chart.

Figure 6 represents the overall flowchart of laser
FPM. The next stage of the image reconstruction process
is explained detailedly as follows.

FIGURE 4 (A) Input image. (B) Hologram reconstructed

image.
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FIGURE 5 Structure of Fourier ptychographic set up detail.

FIGURE 6 Overall flow chart of the laser-FPM.
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3.2.2 | Image reconstruction

High-frequency components, on the other hand, reflect
the sample's features, while low-frequency components
indicate the sample's brightness and shape. According to
the imaging principle, the optical system serves as a low-
pass filter, preventing high-frequency information from
going through. As a result, turning on the center micromir-
ror arrays allows for the acquisition of the sample's outline
while the details are blurred. It is possible to modify the
state of the micromirror array and modulate the reflected
beam into a parallel beam that illuminates the sample at
varying angles using programming controls, therefore
increasing the system's NA. To generate a parallel beam
perpendicular to the sample plane, the first stage in the
imaging process is to turn on the micromirrors array from
the center of the DMD chip. Following that, the rest of the
micromirror arrays are turned on in spiral order. Finally, a
series of raw photos matching various illumination angles
are recorded. These unprocessed pictures are then used to
create a high-resolution image. The following are the
recovery techniques and algorithms for the FP scheme:

The procedure for recovering from Figure 7 and
Algorithm 1 depicts the FP system; It begins with only
an estimate of the sample profile with great resolution,
comparable to the single state methodology:

ffiffiffiffiffiffiffiffiffiffiffi
Iheiϕh

p
lots of low target images to various coherent states are
produced using this sample estimate. Second, to form the
incoherent mixture, the target images' intensity ele-
ments are combined It . The third factor is the proportion
of reality to potential measurements Im besides It updat-
ing the intensity aspects of the target pictures while leav-
ing the phase components alone. The modified target
images are then utilized to adjust the sample estimate's
corresponding spectral regions. Finally, the method is
iterated numerous times until the answer converges for
all intensity data. The total number of coherent states is
proportional to the computational cost of the state-
multiplexed FP technique. Two-state multiplexing, for

example, takes twice as long to compute as single-state
multiplexing does.

The substitution of intensity procedure is the main
distinction between the disclosed method and the FP
with a single state. The objective image's intensity ele-
ment is immediately substituted as determined by the
actual measurement in the single-state FP, but the phase
component remains unaltered. Using the ratio of the
incoherent mixture to the actual measurement and on
the other hand, the presented state-multiplexed tech-
nique updates the targeted pictures' luminance compo-
nents. The intensity accumulation of several coherent
phases matches the actual coherent combination as a
result of the current updating mechanism, while the
amplitude of individual modes is retained.

The micromirror arrays are turned on one by one in
this experiment. The first micromirror array is chosen,
which is concentric with the zoom mechanism and
allows the beam to illuminate the sample normally.
Each micro mirror's position is shown here arraya,b(row
a column n) and relates to a distinct angle of illumination
ku,a,b,kv,a,bð Þ of the parallel wave generated by the zoom
system and the condenser lens. The algorithm's flow

FIGURE 7 Recovery procedures of the FP scheme.

Algorithm 1 Fourier ptychography scheme

Begin
Step 1: Initialization
Step 2: Generate low-resistance target images

corresponding to different coherent
state

Step 3: sum up the intensity components of
target images

Step 4: low resistance images
Step 5: update the corresponding spectral

Region of the high-resistance image
End
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chart is presented in Figure 8 below. Intensity image
with a low resolution Pa,b with A CCD camera captures
particular angle information. The starting value of the high-
resolution complex amplitude image is approximated as a
random value before the FPM iteration process starts
oo u,vð Þ thus the pupil function is calculated as follows:
qo ku,kvð Þ: Fourier transformation can be used to acquire the

spectrum, and the auxiliary function for each micromirror
array can be built using the spectrum and pupil function.

O ku,kvð Þ¼ δ o u,vð Þf g, ð1Þ

Ψj
a,b ku,kvð Þ¼ oj ku�ku,a,b,kv,a,bð Þqj ku,kvð Þ: ð2Þ

Anywhere Ψj
a,b in the Fourier spectrum just after the

micro mirror's pupil arraya,b enlightenment. After that,
an inverse Fourier transform is applied to the acquired
auxiliary function to produce an estimate of the complex
field of the low-resolution image. φa,b.

ϕj
a,b u,vð Þ¼ δ�1 Ψj

a,b ku,kvð Þ
n o

: ð3Þ

The actual image intensity takes its place after that Za,b

while leaving the phase component alone the low-resolu-
tion image's modified Fourier spectrum is as follows;

φj
a,b u,vð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Za,b

ϕj
a,b u,vð Þ

��� ���2
vuut ϕj

a,b u,vð Þ, ð4Þ

φj
a,b ku,kvð Þ¼ δ ϕj

a,b u,vð Þ
n o

: ð5Þ

Lastly, the aperture position is used ku,a,b,kv,a,bð Þ as
well as the new Fourier spectrum φj

a,b ku,kvð Þ, the
object and pupil functions are updated using two functions.

Wherever γ1 and γ2 (set as γ1 ¼ 1 and γ2 ¼ 10) regular-
ization constants are used in FPM to maintain numerical
stability, α and β (both sets to 1) are the coefficient
parameters of the FPM iteration's step size. The next
micromirror array is turned on when a micromirror is
changed. After updating all of the micromirror arrays,
the aforementioned stages are continued until the FPM
converges, and the following is the entire flowchart of
laser FPM.

3.3 | Feature extraction

Histopathological image classification for breast
cancer, feature extraction is crucial. For categorizat-
ion purposes, the advantageous aspects of histopatho-
logical pictures are taken from the image. It is
difficult to get a nice feature out of an image. There
are a variety of feature extraction approaches to
choose from. We extract entropy, geometrical charac-
teristics, and textural features from photos in
this paper. These features are explained detailedly as
follows.

Ojþ1 ku,kvð Þ¼ Oj ku,kvð Þþβ
qj kuþku,a,b,kvþkv,a,bð Þj j � qj kuþku,a,b,kvþkv,a,bð Þ½ ��

qj ku,kvð Þj jmax � ð qj kuþku,a,b,kvþkv,a,bð Þ
��� ���2þ γ1

� ϕj
a,b kuþku,a,b,kvþkvþkv,a,bð Þ

h
�Oj ku,kvð Þqj kuþku,a,b,kvþkv,a,bð Þ

i
,

ð6Þ

Pjþ1 ku,kvð Þ¼ Pj ku,kvð Þþα
Oj ku�ku,a,b,kv�kv,a,bð Þ�� �� � Oj ku�ku,a,b,kv�kv,a,bð Þ� ��

Oj ku,kvð Þ�� ��
max � Oj ku�ku,a,b,kv�kv,a,bð Þ�� ��2� γ1

�
� φj

a,b ku�ku,a,b,kv�kv,a,bð Þ
h

�Oj ku,kvð Þqj kuþku,a,b,kvþkv,a,bð Þ
i
:

ð7Þ
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3.3.1 | Feature extraction based on entropy

Entropy is a measure of the degree of uncertainty in a
system. When all distribution points have the same prob-
ability, the entropy of the distribution is maximized. The
higher the entropy, the less predictable the occurrences
are, and the lower the entropy, the more predictable the

events are. It is a good idea to choose the attribute with
the maximum information acquisition. It does so by low-
ering entropy, which improves predictability. When the
entropy decreases as a result of representation selection,
information gain is positive. A reduction in entropy indi-
cates a reduction in unpredictability, as well as an
improvement in predictability.

FIGURE 8 Overall flowchart of the laser-FPM.
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The sum of every image makes a random variable for
which the expected esteem or average is the entropy.
Entropy is evaluated for the informational collections by
utilizing conditions (8)

Ey setð Þ¼
XM
i¼1

P valið Þ log2 P valið Þf g, ð8Þ

where, P valið Þ is the probability of choosing the ith feature.

3.3.2 | Feature extraction based on
geometrical features

For several types of cell differentiation, morphological
features are used to characterize the nucleus shape. Vari-
ous morphological characteristics Due to the nucleus's
diversity of morphologies, information such as surface,
exclusion zones, equivalent diameter, stability, irregular-
ity, form identity, boundary, density, breadth, massive
duration, as well as minor-axis length is obtained. The
following is a thorough explanation:

Nucleus area
The nucleus pixel region is used to calculate the area of
an item in a 2D image. The following formula can be
used to compute it:

Z¼
Xu
x¼1

Xv
y¼1

Q x,yð Þ, ð9Þ

where the nucleus area is represented by Z, while the seg-
mented brest cancer-based histopathological image pic-
ture or region of interest (ROI) is represented by Q,
which has u rows and v columns.

Perimeter
On the nucleus's boundary, the perimeter is the spacing
amongst each adjacent pair of pixels. Counting the total
number of edge pixels associated with the item is the eas-
iest approach to determining the nucleus' perimeter. The
following mathematical formula demonstrates this:

pi ¼
X
u,vεBi

Q u,vð Þ, ð10Þ

where pi seems to be the circumference, Q remains the
image that has been split or a ROI through u rows as well as
v columns, besides Bi characterizing the boundary pixels.

Aspect ratio
This factor is especially useful for discriminating between
spherical versus noncircular objects, as well as needle-
like shapes. The aspect ratio ranges from 0 to 1 in value.
The higher the number, the more elongated the cells are,
whereas the lower the number, the more benign the cells are.

Solidity
The ratio of ROI's area A to its convex hull is known as
solidity. It is a necessary feature, and it is calculated as
follows:

Solidity¼ area
convexhull

: ð11Þ

3.3.3 | Feature extraction based on textual
features

The fundamental idea of implementing FP and deep
learning using classification of histopathological images
of breast cancer. This project's goal is to acquire texture value.
Every image is encoded after being separated into “n” sub-
blocks. Histopathological Image assesses whether the phases
of neighboring pixels are homogeneous or heterogeneous for
each sub-block. As a result, the texture features of the image
are more easily found during image retrieval, making it eas-
ier to detect similarities with the texture features.

The following objectives were pursued in the experiments:

1. To establish if the conceptually hypothesized topo-
graphical assets feature relationship aligns with both
the practical scenario by investigating the degree to
which each of the five textural characteristics is
related to each of the five textural properties.

2. To find out how closely the features are linked to one
another, as well as how the qualities are associated
with each other;

3. To see if particular configurations of features might
suggest resemblance among distinct textural patterns,
and thus to see how close the features are to human
perception of textures.

After the extraction of features, all of the extracted
features are then moved on to the next phase of classifica-
tion, which is described in full below;

3.4 | Entropy-based normalization deep
neural network

ENDNN classifier classifies the breast cancer images into
normal or lesion.

3.4.1 | Entropy-based DNN

Before flowing via a max-pooling layer to the convolu-
tional layer, the input is first transmitted through a
DNN convolutional layer, which performs entropy-based
normalization. The method is then repeated for the
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max-pooling layer, with a layer that is entirely coupled to
the Softmax regressor in the convolutional layer. The
structure of the building projected ENDNN is depicted in
Figure 9.

3.4.2 | Entropy-based normalization

Normalization is a technique for altering the range of
pixel force values. To improve the range of Histopatho-
logical Images, an entropy-based normalizing computa-
tion is performed. The following condition represents
entropy-based normalization mathematically:

EBN¼Entropy based value� X�Xmin

Xmax �Xmin
, ð12Þ

where, Xmin along with Xmax the minimum as well as
data's maximum values X, wherein EBN stands for
entropy based on esteem normalized or else standardized
histopathological image.

Convolution layer: The first layer of the network is uti-
lized to retrieve the image in its original clear format
using a matrix or kernel. By understanding the pixels, the
link between the histopathological image characteristics
is maintained. Analyze the data fields thoroughly for the
following layers of convolution. The requirement
obtained in the equation is satisfied by this layer (5). In
either instance, the element map is the result of the
convolution

yk ¼
XN�1

n¼0

xnhk�n: ð13Þ

Wherever x the input images, h are fp, as well as N is
the number of essentials in x. The output is y. The sub-
scripts denote information nth as a constituent of histo-
pathological image.

Max-pooling layer: The purpose of the pooling layer is
to minimize the system's boundary calculations. To mini-
mize the image's dimensionality, the max-pooling layer is
utilized as well as the histopathological image, and it is
also known as the downsampling layer since it contrib-
utes to the contribution of the following layer.

Fully connected layer: The previous layer's input is
received by each neuron, which is beneficial for develop-
ing the most neurons from the day before levels.

Softmax: It is used to denote the different digits of
{0, 1}, to handle numerous classes, the assumption of
labels logistic regression is used.

pi ¼
exiPk
1e

xi
: ð14Þ

Anywhere, x is the network input, and ENDNN is
used to classify the input images based on the entropy
value and the outcomes to determine whether they are
injured or normal. We applied the entropy-based deep
neural architecture in a precise order. Furthermore, its
parameter learning includes both the pre-training as well
as fine-tuning stages.

3.4.3 | Pre-training stage

The DBN paradigm allows relies mostly on the network
it provides observable activations states the network
belief is all about the hidden units of a network. We used
RBM to solve the problem described above.

Restricted Boltzmann machine: BM is a type of
Markov random sequential manner with one layer of
hidden stochastic units and one layer of visible or observ-
able stochastic units.

Step 1: We begin by initializing the visible units,
which are the features that have been chosen f si for the
vector of training

Input features
Entropy based 

normalization
Max pooling

Entropy 

based 

normalization

Max pooling

conv1

conv2
Softmax 

regression

1

2
FIGURE 9 Architecture of the

proposed EDNN.
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E x,yð Þ¼�
XI
i¼1

XJ
j¼1

Qijf siyj�
XI
i¼1

αif si�
XJ
j¼1

βjyj: ð15Þ

Anywhere, Qij reflects the observable unit's symmetri-
cal interaction term f si as well as the secret unit yj, α,β is
the bias term, I,J which seems to be the total number of
units in the system, including visible as well as hidden.
Defining the gradient of a training vector's predictive rel-
evance in terms of weight is abnormally simple. That
there were in an RBM, there are no direct influences
between hidden units; obtaining an impartial sample of
them is extremely simple f si,yj

� �
data

ρ yj ¼ 1 j f si
� �

¼ ζ
XI
i¼1

Qijf siþαj

 !
: ð16Þ

Anywhere ζ xð Þ is the logistic sigmoid function
1

1þexp xð Þð Þ, f si,hj which is the unbiased sample.
Step 2: Offered units that are visible and those that

are hidden are both updated at the same time. The stochas-
tic steepest ascent throughout the log possibility of the train-
ing data leads to a considerably simpler learning method

Wij ¼ θ f siyj
� �

data
f siyj
� �

reconstruction
: ð17Þ

Anywhere, Wij represents the updated weight gained
as a result of weight changes in the buried layer; When-
ever the RBM is activated, trained a dissimilar RBM is to
be able to “stacked” to create a multilayer model on top of
it The final layer of the previously trained layers is used as
a data source for the revolutionary RBM. The finished
deep network resources are currently being fine-tuned.

3.4.4 | Fine-tuning phase

The algorithm is fine-tuned using the backpropagation
algorithm. An output layer is meant to evaluate the net-
work efficiency somewhere at the peak of the DNN. In
addition, the training dataset is skilled till the ideal
weight for optimum performance is achieved. Finally, the
ENDNN classifier classifies the breast cancer images into
normal or lesion.

4 | RESULTS AND DISCUSSION

Evaluate the overall consequence of the proposed method
in this section based on FP and deep learning using
breast cancer histopathological image classification. In
this section, the method introduced in MATLAB applies
to a system with 6-GB-RAM and an Intel I-7 processor.
The accuracy and performance of the method were evalu-
ated at 2.6 GHz.

4.1 | Dataset description

The summary of our dataset is given in Table 2. And then
the description of histo-pathological images is given in
Table 3. The dataset is described in [34].

4.2 | Performance metrics

The effectiveness of the suggested strategy is assessed
using a set of performance metrics. To evaluate our pro-
posed methodology for efficient categorization, we need
to compute various assessment metric values. Three
indicators are used to assess the effectiveness of our pre-
sented design accuracy, precision, recall, F-measure,
true positive rate (TPR), and false positive rate (FPR).
The equations below show how to demonstrate these
assessment indicators.

4.2.1 | Precision

Precision is defined as the ratio of the number of normal
images identified to the estimated number of regular and
abnormal people lesion images detected, as given in
Equation (18)

P¼ TP
TPþFP

: ð18Þ

4.2.2 | Recall

Recall is defined as the proportion of normal people to
the total number of people images detected as a percent-
age of the total amount of photos available in the dataset
(Equation (19))

TABLE 2 Summary of our dataset.

Dataset Normal Benign
In situ
carcinoma

Invasive
carcinoma Total

Initial 55 69 63 62 249

Extended 299 1106 1066 1300 3771

Overall 354 1175 1129 1362 4020
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R¼ TP
TPþFN

: ð19Þ

4.2.3 | F-measure

The harmonic mean of recalls and precision metrics,
which is given in the equation, is the F-measure
(Equation (20))

F¼ 2PR
PþR

, ð20Þ

where TP is the true positive, FP is the false positive, and
FN is the false negative.

4.2.4 | True positive rate (TPR)

The TPR is the fraction of positive experiment outcomes
that are considered

TPR¼ TP
TPþFP

: ð21Þ

4.2.5 | False positive rate (FPR)

The number of inaccurate positive predictions divided
by the total number of negatives yields the FPR.
1—Specificity is another way to calculate it

FPR¼ FP
FPþTN

: ð22Þ

4.3 | Confusion matrix

Confusion distribution is a tool often used to assess the effec-
tiveness of the algorithm on even a set of test data for which
the true values have been determined. The confusion matrix
is straightforward, however, the vocabulary used to describe
it can be perplexing. In a nutshell, the confusion matrix is
based on the recommended accuracy. The confusion matrix
tables and their values are represented as follows in Table 4.

4.4 | Sample outputs

The following Figures 10 and 11 specifies the sample out-
comes of amplitude and phase as well as zoomed-in

patch and fpm image. Here the amplitude and phase of
an image are viewed. Then the patch image and the
extracted image are obtained.

TABLE 4 Confusion matrix of the proposed method with

existing methods.

(a) Proposed
Accuracy 98.81%

Benign 98.67%
592

1.33%
8

Malignant 1.17%
7

98.83%
593

Benign Malignant

Target class

(b) CNN

Accuracy 95.41%

Benign 95.83%
575

4.17%
25

Malignant 5.00%
30

95.00%
570

Benign Malignant

Target class

(c) Decision tree

Accuracy 91.6%

Benign 92.00%
552

8.00%
48

Malignant 8.83%
53

91.17%
547

Benign Malignant

Target class

(d) KNN

Accuracy 90.5%

Benign 90.67%
544

9.33%
56

Malignant 9.67%
58

90.33%
542

Benign Malignant

Target class

(e) SVM

Accuracy 89.2%

Benign 89.67%
538

10.33%
62

Malignant 11.17%
67

88.83%
533

Benign Malignant

Target class

TABLE 3 Description of pathological images in our dataset.

Color model Red green blue

Size 2048 � 1536 pixels

Memory space 3–20 MB (approx.)

Type of label Image-wise
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FIGURE 10 Sample

outcomes of amplitude and

phase

FIGURE 11 Sample

outcomes of a zoomed-in patch

image.

FIGURE 12 Performance and comparative analysis of

accuracy.
FIGURE 13 Performance and comparative analysis of MAE.
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4.5 | Experimental results and analysis

Figure 1 depicts the approach's effectiveness 8–11 which
is graphically represented as follows;

Figure 12 depicts the approach's effectiveness. The accu-
racy plot's performance is depicted in the diagram above.
When compared to other methodologies, the accuracy grad-
ually improves, according to the analysis. Figure 9 shows
the highest level of precision 98.75 for using the proposed.
Here, our methodology is compared with existing CNN [28],
decision tree [26], KNN [27] as well as SVM [26]. Compar-
ing these other existing approaches proposed to obtain the
maximum accuracy and produce higher outcomes.

The above Figure 13 shows the performance and com-
parative analysis of mean absolute error. From Figure 13
we obtain the maximum MAE of 0.0125 for using the pro-
posed. Here, our methodology is compared with existing
CNN, decision tree, KNN as well as SVM. As per the anal-
ysis, a comprehensive understanding of our suggested
approach to achieving the maximum mean absolute error
rates compared with other methods from the result.

The above Figure 14 shows the performance and
comparative analysis of precision, recall, and F-measure
plots. From Figure 14 we obtain the maximum precision
of 98.66666667, recall of 98.83138564, and F-measure of
98.74895746 for using the proposed. Here, our methodology
is compared with existing CNN, decision tree, KNN as well

FIGURE 14 Performance and comparative analysis of

precision, recall, F-measure.

FIGURE 15 Performance analysis of TPR, FPR.
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as SVM. As per the analysis, we have a comprehensive
understanding of our suggested approach to achieving the
maximum precision, recall, and f-measure rates compared
with other methods from the result.

FPR is estimated as the ratio among the number of
undesirable actions incorrectly considered as FP as well
as the entire number of authentic undesirable actions.
When analyzing Figure 15 proposed obtains the maxi-
mum TPR. Existing techniques are not identifying the
TPRs clearly but the proposed correctly identifies the
TPRs which are specified in the above graphical
representation.

In Figure 16 the loss function for the proposed with
the existing methods is given. Here the proposed algo-
rithm has less loss compared to the existing CNN, SVM,
KNN, and decision tree. The loss function is calculated in
the classification stage to prove the classification

algorithm for the proposed is better than the existing one
achieved.

In Table 5 the comparison of existing methods with
the proposed in terms of accuracy, precision, recall,
F-measure, and mean absolute error is determined. The
proposed methods of accuracy precision, recall, F-measure
and mean absolute error are 98.75, 98.66667, 98.83139,
98.74896, and 0.0125. Compared to the existing methods
the proposed algorithm provides better results.

4.6 | Comparison analysis with existing
papers

The comparison of related methods and classification
with the proposed in terms of accuracy, precision, recall,
F-measure, and mean absolute error is described in

FIGURE 16 Loss function

for the proposed with the

existing methods.

TABLE 5 Comparison of existing methods with the proposed in terms of accuracy, precision, recall, F-measure, and mean absolute

error.

Methods Accuracy Precision Recall F-measure Mean absolute error

Proposed 98.75 98.66667 98.83139 98.74896 0.0125

CNN 95.412 94.227 92.846 93.53 0.0248

Decision tree 91.6 90.784 88.562 89.66 0.04536

KNN 90.5 88.5 87 87.7 0.07224

SVM 90.5 87.9 87 87.4 0.80475
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Table 6. Here the related papers to the proposed method
are described in [21, 22, 29–33].

5 | CONCLUSION

In this work, the FP and deep learning using breast can-
cer histopathological image classification are presented.
This paper initially extracts the image in high-resolution
computer-generated integral holograms using the FP
method. Here, we have to recover the high-resolution
hologram through an iterative retrieval with FP con-
straints. Therefore, the feature extraction process
includes entropy, geometrical features, and textural fea-
tures. And then the entropy-based normalization is used
to optimize the features. After that, the classification pro-
cess of the proposed ENDNN classifier classifies the
breast cancer images into normal or lesion. The proposed
model gives high classification accuracy with optimal fea-
tures and achieves optimal performance metrics com-
pared to other existing CNN, decision trees, KNN, and
SVM methods in terms of accuracy, precision, recall,
F-measure, and mean.
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